Modern Assembly Language Programming
with the
ARM processor
Chapter 9: ARM Vector Floating Point Processor

© ARM VFP

© Load/Store Instructions

© Data Processing Instructions

@ Data Movement Instructions

@ Data Conversion Instructions

© Floating Point Sine Function

VEFP Versions

VFEPv1:
VFPv2:

VFPv3:

VFPv4:

Obsolete

An optional extension to the ARMv5 and ARMv6 processors. VEPv2
has 16 64-bit FPU registers.

An optional extension to the ARMv7 processors. It is backwards
compatible with VEPv2, except that it cannot trap floating-point
exceptions. VFPv3-D32 has 32 64-bit FPU registers. Some processors
have VFPv3-D16, which supports only 16 64-bit FPU registers.
VFPv3 adds several new instructions to the VFP instruction set.

Implemented on some Cortex ARMv7 processors. VFPv4 has 32 64-bit
FPU registers. It adds both half-precision extensions and
multiply-accumulate instructions to the features of VFPv3. Some
processors have VFPv4-D16, which supports only 16 64-bit FPU
registers.

Additional Registers

r0 sl s0
rl s3 s2
2 s5 s4
r3 s7 s6
rd s9 s8
15 s11 s10
6 s13 s12
r7 s15 s14
r8 s17 s16
r9 s19 s18
rl0 s21 520
r11 (fp) 523 22
r12 (ip) 525 524
13 (sp) 527 26
rl4 (Ir) 529 s28
r15 (pc) s31 s30
CPSR

FPSCR

do
d1
d2
d3
d4
ds
d6
d7
d8
d9
d1o
d11
d12
di3
d14
di5
di6
di17
di8
d19
d20

d22
d23
d24
d25
d26
d27
d28
d29
d30

P N« — — —

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Overview

o Adds about 23 new instructions (depending on version).

o Instructions are provided to:

transfer floating point values between VFP registers,

transfer floating-point values between the VFP coprocessor registers and main
memory,

transfer 32-bit values between the VFP coprocessor registers and the ARM integer
registers,

perform addition, subtraction, multiplication and division, involving two source
registers and a destination register,

compute the square root of a value,
perform combined multiply-accumulate operations,

perform conversions between various integer, fixed point, and floating point
representations, and

compare floating-point values.

Register Rules

o Registers d0 through d7 are volatile. They are used for passing arguments,
returning results, and for holding local variables. They do not need to be
preserved by subroutines.

o Registers d8 through d15 are non-volatile. The contents of these registers must
be preserved across subroutine calls.

@ Registers d16 through d31 (if present) are also considered volatile.

FPSCR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

e R R W W MWW | |

o |]
DN
FZ
RMODE[1:0]
STRIDE[1:0] —————— e
LEN[2:0] I10C
IDE DZC
IXE OFC
UFE UFC
OFE EE——— 1D(C
DZE IDC

IOE

FPSCR — Most Important Bits

N

A%

The Negative flag is set to one by vemp if Fd<Fm.

The Zero flag is Set to one by vcmp if Fd=Fm.

The Carry flag is set to one by vemp if Fd=Fm, or Fd>Fm, or Fd and Fm are
unordered.

The oVerflow flag is set to one by vcmp if Fd and Fm are unordered.

RMODE Rounding mode:

00 Round to Nearest (RN).

01 Round towards Plus infinity (RP).
10 Round towards Minus infinity (RM).
11 Round towards Zero (RZ).

FPSCR — RunFast Mode

DN Default NaN enable:
0: Disaable Default NaN mode. NaN operands propagate through to the
output of a floating-point operation.
1: Enable Default NaN mode. Any operation involving one or more NaNs
returns the default NaN.
Default NaN mode does not comply with IEEE 754 standard, but may increase
performance.
FZ Flush-to-Zero enable:
0: Disable Flush-to-Zero mode.
1: Enable Flush-to-Zero mode.
Flush-to-Zero mode replaces subnormal numbers with 0. This does not comply
with IEEE 754 standard, but may increase performance.

RunFast Mode: When DN=1, FZ=1, and all exceptions disabled (IDE through IOE
all set to zero).

o Higher Performance

o Not IEEE-754 compliant

FPSCR — Vector Mode

STRIDE Sets the stride (distance between items) for vector operations:
00 Strideis 1.
01 Reserved.
10 Reserved.
11 Strideis 2.
LEN Sets the vector length for vector operations:
000 Vector length is 1 (scalar mode).
001 Vector length is 2.
010 Vector length is 3.
011 Vector length is 4.
100 Vector length is 5.
101 Vector length is 6.
110 Vector length is 7.
111 Vector length is 8.

If LEN is not zero, then certain instructions will operate on vectors.

Scalar Mode

Op Fd,Fn,Fm
Op Fd,Fm
o the LEN field is set to zero (scalar mode), or

o the destination operand, Fd, is in Bank 0 or Bank 4.

The operation acts on Fm (and Fn if the operation uses two operands) and places the
result in Fd.

Mixed Mode

Op Fd,EFn,Fm
Op Fd,Fm

o the LEN field is not set to zero, and
e Fmis in Bank 0 or Bank 4, but

e Fdis not.

If the operation has only one operand, then the operation is applied to Fm and copies
of the result are stored into each register in the destination vector.

If the operation has two operands, then it is applied with the scalar Fm and each
element in the vector starting at Fn, and the result is stored in the vector beginning
at Fd.

Vector Mode

Op Fd,Fn,Fm
Op Fd,Fm

o the LEN field is not set to zero, and

@ neither Fd nor Fm is in Bank 0 or Bank 4.

If the operation has only one operand, then the operation is applied to the vector
starting at Fm and the results are placed in the vector starting at Fd.

If the operation has two operands, then it is applied with corresponding elements
from the vectors starting at Fm and Fn, and the result is stored in the vector
beginning at Fd.

Load/Store Single Register

o Operations:
vldr Load VFP Register, and
vstr Store VFP Register.

o Syntax:

v<op>r{<cond>}{.<prec>} Fd, [Rn{,#offset}]
v<op>r{<cond>}{.<prec>} Fd, =label

<op> may be either 1d or st.

Fd may be any single or double precision register.
Rn may be any ARM integer register.

<cond> is an optional condition code.

<prec> may be either £32 or £64.

o Examples:

v1ldr s5, [r0] @ load s5 from address in r0
vstr.fo4 d4, [r2] @ store d4 using address in r2
vstreq.£32 s0, [rl] @ if eq condition is true,

@ store s0 using address in rl

Load/Store Multiple Register

o Operations:
vldm Load Multiple VFP Registers, and
vstm Store Multiple VFP Registers.

o Syntax:
v<op>m<mode>{<cond>}{.<prec>} Rn{!},<list>
vpush{<cond>}{.<prec>} <list>
vpop{<cond>}{.<prec>} <list>

e <op> may be either 1d or st.

o <mode> is one of

ia Increment address after each transfer.

db Decrement address before each transfer.

o Rn may be any ARM integer register.
e <cond> is an optional condition code.
e <prec> may be either £32 or £64.

e <1list> may be any set of contiguous single precision registers, or any set of
contiguous double precision registers.

o If mode is db then the ! is required.

Load/Store Multiple Register Continued

o Examples:

vstmdb
vstmia

vldmia
vldmiaeq

sp!, {s0-s3}
rl, {s0-s31}

sp!, {d4-d7}
sp!, {d4-d7}

@ @ @ @ @ @

Store sO through s3 on stack
Store all fp registers

at address in rl

Pop four doubles from the stack
If eq, then pop four doubles
from the stack

Copy, Absolute Value, Negate, and Square Root

o Operations:
vepy Copy VFP Register (equivalent to move),
vabs Absolute Value,
vneg Negate, and
vsqrt Square Root,
o Syntax:

v<op>{<cond>}.<prec> Fd, Fm

e <op> is one of cpy, abs, neg, or sqrt.
e <cond> is an optional condition code.

e <prec> may be either £32 or £64.

o Examples:

1 vabs d3, d5

@ Store absolute value of dl in d3
2 vnegmi sl15,

s1l5 @ if mi, then negate sl15

Add, Subtract, Multiply, and Divide

o Operations:
vadd Add,
vsub Subtract,
vmul Multiply,
vamul Negate and Multiply, and
vdiv Divide.

o Syntax:

v<op>{<cond>} .<prec> Fd, Fn, Fm

e <op> is one of add, sub, mul, nmul, or div.
e <cond> is an optional condition code.
e <prec> may be either £32 or £64.

o Examples:

1 vadd.f64 do, di, d2 @ dO <— dl1 + d2

2 vaddgt . £32 s0, sl, s2 @ if (gt) then s0 <- sl + s2
3 vnmul.f32 s10, s10, sl14 @ s10 <= —(s10 * sl14)

4 vdivlt.fe4 40, d7, d8 @ if 1t, then d0 <- d7 / d8

Compare

The compare instruction subtracts the value in Fm from the value in Fd and set the
flags in the FPSCR based on the result.
@ Operations:
vemp Compare, and
vempe Compare with Exception.

o Syntax:

vcmp{e} {<cond>}.<prec> Fd, Fm

o If e is present, an exception is raised if either operand is any kind of NaN. Otherwise,
an exception is raised only if either operand is a signaling NaN.

e <cond> is an optional condition code.

e <prec> may be either £32 or £64.

o Examples:

vemp. £32 s0, sl @ Subtract sl from sO and set
2 @ FPSCR flags

Moving Between Two VFP Registers

@ Operations:
vmov Move Between VFP Registers.

e Syntax:

vmov {<cond>}{.<prec>} Fd, Fm

e F canbe s or d.
e Fd and Fm must be the same size.
e <cond> is an optional condition code.

e <prec> is either £32 or £64.

o Examples:

1 vmov.f64d d3,d4 @ d3 <- d4
2 vmov.f£32 s5,s12 @ s5 <— sl12

Moving Between VFP and Single ARM Register

@ Operations:
vmov Move Between VFP and One ARM Integer Register.

o Syntax:
vmov {<cond>} Rd, Sn
vmov {<cond>} Sn, Rd

o Rd is an ARM integer register.
e Sdis a VFP single precision register.

e <cond> is an optional condition code.

o Examples:

1 vmov r3,s4 Q@ r2 <= s4
2 vmov s12,r8 @ s12 <- r8

Moving Between VFP and Two ARM Registers

@ Operations:
vmov Move Between VFP and Two ARM Integer Registers.
o Syntax:

vmov {<cond>} destination(s), source(s)

e Source and destination must be VFP or integer registers. The following table shows
the possible choices for sources and destinations.

ARM Integer Floating Point
RLRh Dd
Sd,Sd’

o Sd and Sd’ must be adjacent, and Sd’ must be the higher-numbered register.

e <cond> is an optional condition code.

o Examples:

1 vmov d9,r0,rl

2 vmov r2,r3,dl2
vmov sl,s2,r2,r4
1 vmov r5,r7,s0,sl

do <-— rl:r0
r3:r2 <- dl2
sl <- r2, s2 <-r4
rl <- s0, r7 <= sl

@ @ @ @

Between ARM Register and VFP System Register
There are two instructions which allow the programmer to examine and change bits
in the VFP system register(s):
@ Operations:
vmrs Move From VFP System Register to ARM Register, and

vmsr Move From ARM Register to VFP System Register.

programs should only access the FPSCR to check the flags and control vector
mode.

User

o Syntax:

vmrs{<cond>} Rd, VFPsysreg
vmsr{<cond>} VFPsysreg, Rd

e VEPsysreg can be any of the VFP system registers.
e Rd can be APSR_nzcv or any ARM integer register.,
e <cond> is an optional condition code.

o Examples:

1 vmrs APSR nzcv,fpscr @ Copy flags from FPSCR to CPSR
vmrs r3, FPSCR @ Copy FPSCR flags to CPSR
vmsr FPSCR,r5 @ Copy FPSCR flags to CPSR

Convert Between Floating Point and Integer

@ Operations:

vevt Convert Between Floating Point and Integer

vevtr Convert Floating Point to Integer with Rounding

o Syntax:

vevt{r}{<cond>}.<type>.f64 sd,
vevt{r}{<cond>}.<type>.£32 sd,
vevt {<cond>}.f64.<type> Dd,
vcvt {<cond>}.£32.<type> sd,

Sm
Sm
Sm

o The optional r makes the operation use the rounding mode specified in the FPSCR.

The default is to round toward zero.

e <cond> is an optional condition code.

o The <type> can be either u32 or s32 to specify unsigned or signed integer.

o These instructions can also convert to from fixed point to floating point if combined

with an appropriate vmul.

Convert Between Floating Point and Integer Cont.

o Examples:

)

vevt . £64.u32
vevt . £64.£32
vevt.u32.£64
vevt.s32.£64

ds,
do,
s0,
s1,

s7
s4
d7
d4

@ Convert unsigned integer to double
@ Convert signed integer to double
@ Convert double to unsigned integer
@ Convert double to signed integer

@@ Convert s10 to an S(15,16)

consta: .float 65536.0

vldr.£32
vmul.f32

sll,consta
s10,s10,s11 @ Multiply equates to shift

vevt.s32.£32 s10,s10

@ Load floating point constant

@ Convert single to S(15,16)

Convert Between Fixed Point and Single Precision

o Operations:
vevt Convert To or From Fixed Point.

o Syntax:

vcevt {<cond>}.<td>.£f32 Sd, Sm, #fbits
vcevt {<cond>}.f32.<td> Sd, Sm, #fbits

e <cond> is an optional condition code.
e <td> specifies the type and size of the fixed point number, and must be one of the
following:
s32 signed 32 bit value,
u32 unsigned 32 bit value,
sl6 signed 16 bit value, or
ul6 unsigned 16 bit value.

o #fbits specifies the number of fraction bits in the fixed point number, and must be
less than or equal to the size of the fixed point number indicated by <td>.

o Examples:

1 vevt.£32.ul6 s0,s0,#4 @ Convert from U(12,4) to single
2 vevt.s32.£32 sl,sl1,#8 @ Convert from single to S(23,8)

sinx Using IEEE Single Precision

il .data

2 @@ The following is a table of constants used in the

3 @@ Taylor series approximation for sine

4 .align 5 @ Align to cache

5| ctab: .word O0xBE2AAAAA @ -1.666666e-01

6 .word 0x3C088889 @ 8.333334e-03

7 .word 0xB9500D00 @ -1.984126e-04

8 .word 0x3638EF1D @ 2.755732e-06

9 .word 0xB2D7322A @ -2.505210e-08

10| Q@@ -
11 .text

12 .align 2

13 @@ sin_a_f implements the sine function using IEEE single
14 @Q precision floating point. It computes sine by summing
15 @@ the first six terms of the Taylor series.

16 .global sin_a_f

17| sin_a_f:

18 @@ set runfast mode and rounding to nearest

19 fmrx rl, fpscr @ get FPSCR contents in rl

20 bic r2, rl, #(0b1111<<23)

21 orr r2, r2, #(0b1100<<23)

22 fmxr fpscr, r2 @ store in FPSCR

23 @@ initialize variables

24 vmul.£f32 s1,s0,s0 @ sl <- x"2

25 vmul.f32 s3,s1,s0 @ s3 <- x"3

26 ldr r0,=ctab @ load pointer to coefficients

27 mov r3, #5 @ load loop counter

sinx Using IEEE Single Precision

© 0 N DU R W N R

loop:

vldr.£32 s4, [r0] Q
add r0,r0,#4 @
vmul.f32 s4,s3,s4 @
vadd. £32 s0,s0,s4 @
subs r3,r3,#1 @
vmulne.f£32 s3,s1,s3 @
bne loop Q
@@ restore original FPSCR
fmxr fpscr, ril

mov pc,1lr

load coefficient

increment pointer

s4 <- next term

add term to result

decrement and test loop count
s4 <- x"2n

loop five times

sinx Using IEEE Single Precision Vector Mode

.data
.align
ctab:

.text
.align 2
.global

6

0xBE2AAAAB
0x3C088889
0xB9500D01
0x3638EF1D
0xB2D7322B

sin_v_f

Align to cache
-1.666667e-01
8.333334e-03
-1.984127e-04
2.755732e-06
-2.505211e-08

sin_v_£f:@Q@ set runfast mode and rounding to nearest

vmrs
bic

orr

vmsr
vmul.f32
1dr
vldmia
vmul.£32
vmul.£32
vmul.£32
vmul.f32
vmul.£32

rl, fpscr

@

get FPSCR contents in rl

r2, rl, #(0b1111<<23)
r2, r2, #(0b1100<<23)

fpscr, r2
sl,s0,s0
r0,=ctab

r0!, {sl6-s20}
s8,s0,sl
s9,s8,s1
s10,s9,sl
sl1,s10,sl
sl2,sl1l,sl

@

@
@
@
@
@
@
@
@

store settings in FPSCR

sl = x"2

get address of coefficients

load all coefficients into Bank 2

s8 = x"3
s9 = x"5
s10 = x"7
sll = x"9
sl2 = x*11

sinx Using IEEE Single Precision Vector Mode

@@ Set VFP for vector mode
r2, r2, #(0bl1111<<16) @ set rounding, stride to 1,

bic
orr
vmsr

r2, r2, #(0b00100<<16)

fpscr, r2

vmul.f32 s24,s8,s16

vmsr

fpscr, rl

@
@
@

@@ Add terms in Bank 3 to

vadd.
vadd.
vadd.
vadd.
vadd.

mov

£32
£32
£32
£32
£32

s24,s24,s25
26,826,527
s0,s0,s24
526,526,528
s0,s0,s26
pc,1lr

store settings in FPSCR
VECTOR operation x” (2n+1)
restore original FPSCR
the result in sO

@ and vector length to 5

* coeff[n]

sinx Using IEEE Double Precision Vector Mode

il .data

2 @@ The following is a table of constants used in the

3 @@ Taylor series approximation for sine

4 .align 7 @ Align for efficient caching

5| ctab: .word 0x55555555, O0xBFC55555 @ -1.666666666666667e-01
6 .word 0x11111111, O0x3F811111 @ 8.333333333333333e-03
7 .word 0x1A01A01A, OxBF2A01A0 @ -1.984126984126984e-04
8 .word 0xA556C734, O0x3EC71DE3 @ 2.755731922398589e-06
9 .word 0x67F544E4, OxBES5AE645 @ -2.505210838544172e-08
10 .word 0x13A86D09, 0x3DE61246 @ 1.605904383682161e-10
11 .word 0xE733B81F, OxBD6AE7F3 @ -7.647163731819816e-13
12 .word 0x7030AD4A, 0x3CE952C7 @ 2.811457254345521e-15
13 .word 0x46814157, O0xBC62F49B @ -8.220635246624329e-18
14

15| Q@@ ————— -~
16 text

17 align 2

18 @@ sin_a_d implements the sine function using IEEE

19 @@ double precision floating point. It takes advantage
20 @@ of the ARM VFP vector processing instructions and

21 @Q@ computes sine by summing the first ten terms of the

22 @@ Taylor series.

23 .global sin_v_d

24| sin_v_d:

25 vmul.f64 di1,d0,do @ dl <- x"2

26 vmrs rl, fpscr @ get FPSCR contents in rl

27 .1if SET_RUNFAST

sinx Using IEEE Double Precision Vector Mode

1 @@ set runfast mode and rounding to nearest

2 bic r2, rl, #(0b1111<<23)

3 orr r2, r2, #(0b1100<<23)

4 vmsr fpscr, r2 @ store settings in FPSCR

5 .endif

6 @@ Set up vector of the initial powers of x in Bank 1

7 Qe vmul.f64 d4,d0,dl @ d8 <- x"3

8 @e vmul.f64 d5,d4,dl @ d9 <- x"5

9 @@ vmul.f64 d6,d5,dl @ d10 <- x"7

10 @@ (The second and third multiply each require the result
11 @@ from the previous multiply, so the instructions are
12 @@ spread out for better scheduling to get 5% better

13 @@ performance overall.)

14 vmul.f64 d4,do0,dl @ d8 <- x"3

15 @@ load vector of coefficients into Bank 2

16 1ldr r0,=ctab @ get address of coefficient table
ilff vmul.f64 d5,d4,dl @ d9 <- x"5

18 vlidmia r0!, {d8-dl0} @ load first three coefficients
19 @@ Make three copies of x"6 in Bank 3

20 vmul.f64 d12,d5,d0 @ dl2 <- x"6

21 vmul.f64 d6,d5,dl @ d10 <- x*7

22 vmov.f64 d13,d12 @ d13 <- x"6

23 vmov.f64 dl4,dl2 @ dl4 <- x"6

24 @@ Set VFP for vector mode (stride = 1, vector length = 3)
25 .1if SET_RUNFAST

26 bic r2, r2, #(0b11111<<16)

27 .else

sinx Using IEEE Double Precision Vector Mode

loop:

bic r2, rl, #(0b11111<<16)

.endif

orr r2, r2, #(0b00010<<16

vmsr fpscr, r2

@@ Multiply powers by coefficients. Put results in Bank 3
vmul.f64 d8,d8,d4 @ VECTOR operation

@@ Add terms in Bank 3 to the result in dO

vadd.f64 d3,d8,d9

vadd.f64 d0,d0,d10

mov r3, #2 @ load loop counter

vadd.f64 do0,d0,d3

@@ load vector of next three coefficients into Bank 2
vldmia r0!, {d8-d10}

@@ Set up vector of the required powers of x in Bank 1

vmul.f64 d4,d4,dl2 @ VECTOR operation
@@ Multiply powers by coefficients Put results in Bank 2
vmul.f64 d8,d8,d4 @ VECTOR operation

@@ Add terms in Bank 2 to the result in dO
vadd.f£64 d3,d8,d9
vadd.f64 d0,d0,d10

subs r3,r3,#1 @ decrement and perform loop test
vadd.f64 d0,d0,d3 @ placed here for performance

bne loop @ perform loop twice

@@ restore original FPSCR

vmsr fpscr, rl

mov pc,1lr

Performance

’ Optimization | Implementation CPU seconds
None Single Precision Scalar Assembly 2.96
Single Precision Vector Assembly 2.63

Single Precision C 8.75

Double Precision Scalar Assembly 4.59

Double Precision Vector Assembly 3.75

Double Precision C 9.21

Full Single Precision Scalar Assembly 2.16
Single Precision Vector Assembly 2.06

Single Precision C 2.59

Double Precision Scalar Assembly 3.88

Double Precision Vector Assembly 3.16

Double Precision C 8.49

Summary

o The ARM VFP provides hardware support for the most common IEEE 754
formats for floating point numbers.

@ Vector mode adds a significant performance improvement.

@ Access to the vector features is only possible through assembly language.

	ARM VFP
	Load/Store Instructions
	Data Processing Instructions
	Data Movement Instructions
	Data Conversion Instructions
	Floating Point Sine Function

